Restoration of p53 tumor suppressor pathway in human cervical carcinoma cells by sodium arsenite.
نویسندگان
چکیده
In most cervical cancer cells, p53 and Rb are disrupted by human papillomaviruses (HPVs) E6 and E7, respectively. Restoration of p53 or Rb function by blocking E6/p53 or E7/Rb pathway might be a potential therapeutic purpose for these cancer cells. Treatment with sodium arsenite (SA) resulted in significant repression of E6 and E7 mRNA levels in SiHa cells. After E6 and E7 repression, p53 was dramatically induced and accumulated in cellular nuclei and Rb was also induced. Two p53-responsive genes, p21(waf1/cip1) and mdm2, were induced after SA treatment. Furthermore, SA also reduced the expressions of Cdc25A and cyclin B, blocked cell cycle progression at G2/M phase, and induced apoptosis in SiHa cells. SA-induced apoptosis was greatly reduced by expression of a dominant-negative mutated p53. In this study, we have first demonstrated that SA did repress E6 and E7 oncogenes, restore the p53 tumor suppressor pathway and induce apoptosis in SiHa cells. Therefore, it would be a potential strategy to promote SA as therapeutic purpose for HPV-positive cancer cells.
منابع مشابه
Sodium arsenite suppresses human papillomavirus-16 E6 gene and enhances apoptosis in E6-transfected human lymphoblastoid cells.
The p53 tumor suppressor pathway is disrupted by human papillomavirus (HPV) in most cervical cancer cells. The E6 proteins, which could mediate p53 degradation, are related to cellular immortalization, transformation, and tumor formation. In order to study the E6 abrogated p53 function in stress, we transfected HPV-16 E6 gene to TK6 cells in this study. Here we showed that HPV-16 E6 mRNA levels...
متن کاملImmunohistochemical Evaluation of Human p53 Tumor Suppressor Protein Content in Ductal Carcinoma in Situ of the Breast
The focus of this study was to determine if early detection of mutant p53 accumulation may be an early indicator of tumor aggressiveness and transformation to invasive breast cancer. For this purpose, the p53 content of 100 human breast biopsies classified as ductal carcinoma (DCIS), was evaluated by immunohistochemical method. All specimens were microscopically classified into histologic types...
متن کاملDepletion of securin increases arsenite-induced chromosome instability and apoptosis via a p53-independent pathway.
Arsenic is a pathologic factor of cardiovascular diseases and cancers; nevertheless, it also acts as an anticancer agent effective on acute promyelocytic leukemia and multiple myeloma. Securin, a proposed proto-oncogene, regulates cell proliferation and tumorigenesis. However, roles of securin on the arsenic-induced cell cycle arrest and apoptosis remain unknown. In this study, the effects of s...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 293 1 شماره
صفحات -
تاریخ انتشار 2002